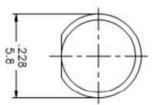


SPECIFICATIONS CL50W4C-45D


OUTLINES DIMENSIONS


DESCRIPTION

- Round Type
- 5mm Diameter
- Lens Color: Water Clear
- With Flange
- Solder leads without standoff

FEATURES

- Epoxy Resin
- · Emitted Color: White
- Technology: InGaN
- Viewing Angle: 45°

Notes:

- 1. All Dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm (0.01") unless otherwise noted.
- 3. Specifications are subject to change without notice.

Part Number	Chip Material	Color of Emission	Lens Type	Viewing Angle
CL50W4C-45D	InGaN	White	Water Clear	45°

ChromeLED Corp. reserves the right to make changes at any time in order to supply the best product possible. The most current version of this document will always be available at: www.chromeled.com

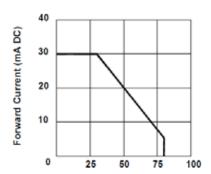
ABSOLUTE MAXIMUM RATINGS

 $(TA=25^{\circ}C)$

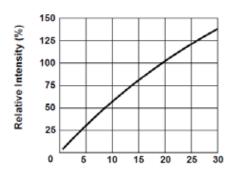
Parameter	Symbol	Max Rating	Unit
Power Dissipation	Pb	114	mW
Pulse Current Forward Current	lFP	100	mA
Continuous Forward Current	lF	30	mA
Reverse Voltage	VR	5	V
Operating Temperature Range	Topr	-30~+80	°C
Storage Temperature Range	Тѕтс	-40~+100	°C
IFP = Pulse Width ≤ 10 ms, Duty Ratio ≤1/10. Soldering Condition: 260 °C/ 5sec			

OPTICAL-ELECTRICAL CHARACTERISTICS

(TA=25°C)


Darameter	Cymbol	Toot Condition	Value			Linit	
Parameter	Symbol	Test Condition	Min	Тур	Max	Unit	
Luminous Intensity	lv	I⊧ = 20mA	5100	8600	ı	mcd	
Forward Voltage	VF	I _F = 20mA	-	3.2	3.8	V	
Reverse Leakage Current	lR	V _R = 5V	-	ı	50	μΑ	
Viewing Angle	201/2	I⊧ = 20mA	-	45	1	deg	
Chromaticity Coordinate	X	I⊧ = 20mA	-	0.31	-	-	
Chromaticity Coordinate	Y	I⊧ = 20mA	-	0.32	-	-	

^{*}Tolerance of viewing angle: -10 / +5 deg.



ChromeLED Corp. reserves the right to make changes at any time in order to supply the best product possible. The most current version of this document will always be available at: www.chromeled.com

OPTICAL CHARACTERISTIC CURVES

Ambient Temperature Ta (°C) Fig 1. Forward Current Vs. Ambient Temperature

Forward Current IF (mA DC)
Fig 3. Relative Intensity
Vs. Forward Current

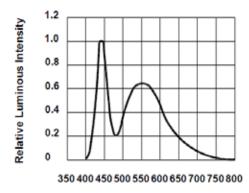
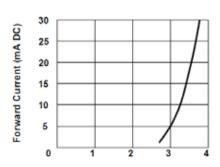
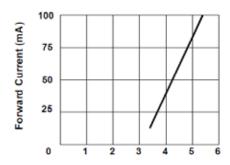
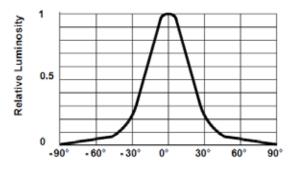




Fig 5. Relative Intensity Vs. Wavelength


Wavelength (nm)

Forward Voltage VF (V) Fig 2. Forward Current Vs. Forward Voltage

Forward Voltage (V)
Fig 4. Peark Forward Voltage
Vs.Forward Current
(100us test pulse,1% duty cycle)

Radiation Angle

Fig 6. Relative Luminous Intensity vs.Radiation Angle

ChromeLED Corp. reserves the right to make changes at any time in order to supply the best product possible. The most current version of this document will always be available at: www.chromeled.com

SOLDERING CONDITIONS – LAMP TYPE LED

RECOMMENDED SOLDERING CONDITIONS

- Solder the LED no closer than 3mm from the base of the epoxy bulb. Soldering beyond the base of the tie bar is recommended.
- Recommended soldering conditions:

Dip Soldering			
Pre-Heat	100°C Max.		
Pre-Heat Time	60 sec. Max.		
Solder Bath Temperature	260°C Max.		
Dipping Time	5 sec. Max.		
Dipping Position	Position No lower than 3mm from the base of the epoxy bulb.		

Hand Soldering				
	Current Series	Others (Including Lead-Free Solder)		
Temperature	300 °C Max.	350 °C Max.		
Soldering time	3 sec. Max.	3 sec. Max.		
Position	No closer than 3mm from	No closer than 3mm from		
	the base of the epoxy bulb.	the base of the epoxy bulb.		

- Do not apply any stress to the lead, particularly when heated.
- The LEDs must not be repositioned after soldering.
- After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- Direct soldering onto a PC board should be avoided. Mechanical stress to the resin may be
 caused by the PC board warping or from the clinching and cutting of the lead frames. When it is
 absolutely necessary, the LEDs may be mounted in this fashion, but, the User will assume
 responsibility for any problems. Direct soldering should only be done after testing has confirmed
 that no damage, such as wire bond failure or resin deterioration, will occur. LEDs should not be
 soldered directly to double sided PC boards because the heat will deteriorate the epoxy resin.
- When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
- Cut the LED lead frames at room temperature. Cutting the lead frames at high temperatures may cause LED failure.