

SPECIFICATIONS CL50UV2C

OUTLINES DIMENSIONS

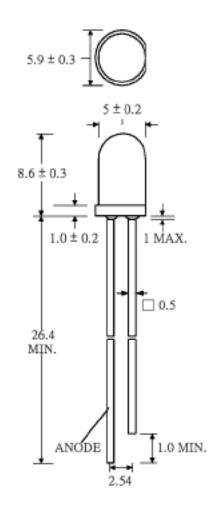
Description

*Round Type

*T1-3/4 (5mm) Diameter

*Lens Color: Water Clear

*With Flange


Features

*Emitted Color: UV

*High Luminous Intensity

*Technology: InGaN

*Peak Wavelength = 380nm

Notes:

- 1. All Dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm (0.01") unless otherwise noted.
- 3. Specifications are subject to change without notice.

Part Number	Chip Material	Color of Emission	Lens Type	Viewing Angle
CL50UV2C	InGaN	UV	Water Clear	12°

ChromeLED Corp. reserves the right to make changes at any time in order to supply the best product possible. The most current version of this document will always be available at: www.chromeled.com

ABSOLUTE MAXIMUM RATINGS

TA=25°C)

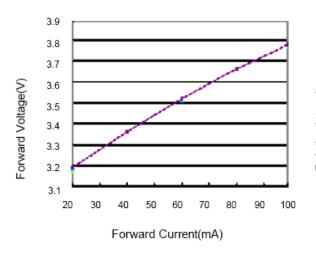
Parameter	Symbol	Max Rating	Unit
Power Dissipation	Po	120	mW
Pulse Current Forward Current	lfp	100	mA
Continuous Forward Current	lF	30	mA
Reverse Voltage	VR	5	V
Operating Temperature Range	Topr	-20~+80	°C
Storage Temperature Range	Тѕтс	-30~+100	°C
I _{FP} = Pulse Width ≤ 10 ms, Duty Ratio ≤1/10. Soldering Condition: 260 °C/ 5			

OPTICAL-ELECTRICAL CHARACTERISTICS

(TA=25°C)

Darameter	Symbol Test Condition	Toot Condition	Value			l lait
Parameter		Min	Тур	Max	Unit	
Luminous Intensity	lv	I _F = 20mA	350	700	ı	mcd
Forward Voltage	VF	I _F = 20mA	ı	3.5	4.0	V
Reverse Leakage Current	lR	V _R = 5V	-	-	10	μΑ
Viewing Angle	201/2	I⊧ = 20mA	-	12	-	deg
Peak Wavelength	λP	I⊧ = 20mA	-	385	-	nm
Dominant Wavelength	λD	I⊧ = 20mA	-	380	-	nm
Spectral Line half-width	Δλ	I⊧ = 20mA	-	13	-	nm

^{*}Tolerance of viewing angle: -10 / +5 deg.


ChromeLED Corp. reserves the right to make changes at any time in order to supply the best product possible. The most current version of this document will always be available at: www.chromeled.com

OPTICAL CHARACTERISTIC CURVES

Fig.1 Forward current vs. Forward Voltage

Fig.2 Relative Intensity vsForward Current

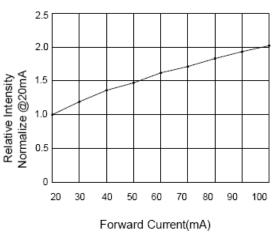
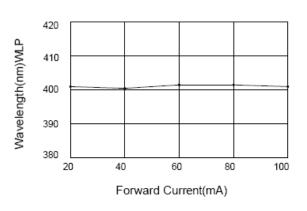



Fig.3 Forward Current vs. Wavelength

Fig.4 Relative Intensity vs. Wavelength

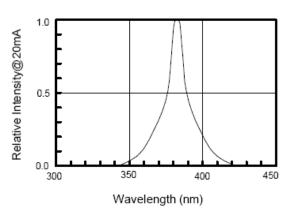
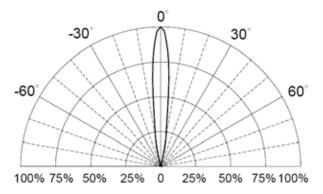
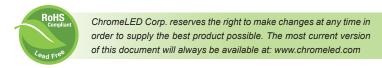



Fig .4 Directivity Radiation

ChromeLED Corp. reserves the right to make changes at any time in order to supply the best product possible. The most current version of this document will always be available at: www.chromeled.com


SOLDERING CONDITIONS – LAMP TYPE LED

- * Solder the LED no closer than 3mm from the base of the epoxy bulb. Soldering beyond the base of the tie bar is recommended.
- * Recommended soldering conditions

Dip Soldering				
Pre-Heat	100 °C Max			
Pre-Heat Time	60 Second Max			
Solder Bath Temperature	260 °C Max			
Dippng Time	5 Second Max			
Dipping Position	No lower than 3mm from the base of the epoxy			

Hand Soldering					
	3mm Series	Others			
Tomporature Soldering Time	300 °C Max	350 °C Max			
Temperature Soldering Time Position	3 Second Max	3 Second Max			
	No closer than 3mm from the	No closer than 3mm from the			
	base of the epoxy	base of the epoxy			

- * Do not apply any stress to the lead. Particularly when heated.
- * The LED must not be repositioned after soldering.
- * After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- * Direct soldering onto a PC board should be avoided. Mechanical stress to the resin may be caused by the PC board warping or from the clinching and cutting of the leadframes. When it is absolutely necessary, the LEDs may be mounted in this fashion, but, the user will assume responsibility for any problems. Direct soldering should only be done after testing has confirmed that no damage, such as wire bond failure or resin deterioration, will occur. LEDs should not be soldered directly to double sided PC boards because the heat will deteriorate the epoxy resin.
- * When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
- * Cut the LED leadframes at room temperature. Cutting the leadframes at high temperature may cause LED failure.

