

SPECIFICATIONS

Part Number	Chip Material	Color of Emission	Lens Type	Viewing Angle
CL50IR890C-30	AlGaAs	Infrared	Water Clear	30°

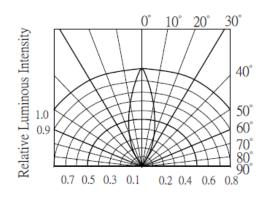
ABSOLUTE MAXIMUM RATINGS

(TA=25°C)

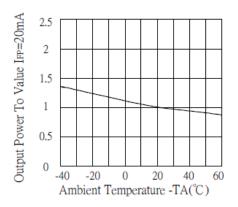
(TA=25°C)

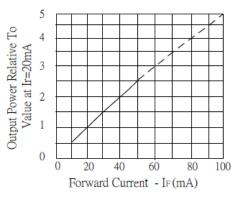
Parameter	Symbol	Max Rating	Unit	
Power Dissipation	PD	85	mW	
Pulse Current Forward Current	lfp	1	A	
Reverse Voltage	VR	5	V	
Operating Temperature Range	Topr	-40~+85	°C	
Storage Temperature Range	Тѕтс	-40~+85	°C	
IFP = Pulse Width \leq 10 ms, Duty Ratio \leq 1/10. Soldering Condition: 260 °C/ 5sec				

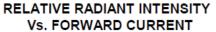
OPTICAL-ELECTRICAL CHARACTERISTICS

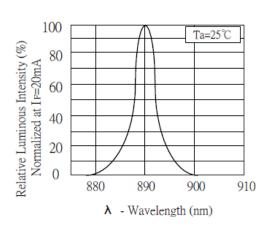

Value Parameter Symbol **Test Condition** Unit Min Тур Max mW/ **Radiant Intensity** I_F = 50mA 20 30 lE _ Sr Forward Voltage VF I_F = 50mA 1.5 1.7 V _ **Reverse Leakage Current** IR $V_R = 5V$ 100 μA -_ Viewing Angle $2\theta 1/2$ I_F = 20mA 30 deg _ _ Peak Wavelength λP I_F = 20mA 890 _ _ nm

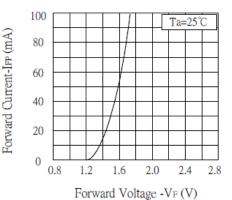
*Tolerance of viewing angle: -10 / +5 deg.




OPTICAL CHARACTERISTIC CURVES




RADIATION DIAGRAM


LUMINOUS INTENSITY Vs. AMBIENT TEMPERATURE

RELATIVE LUMINOUS INTENSITY Vs. WAVELENGTH

MAX FORWARD CURRENT Vs. FORWARD VOLTAGE

SOLDERING CONDITIONS – LAMP TYPE LED

- * Solder the LED no closer than 3mm from the base of the epoxy bulb. Soldering beyond the base of the tie bar is recommended.
- * Recommended soldering conditions

Dip Soldering			
Pre-Heat	100 °C Max		
Pre-Heat Time	60 Second Max		
Solder Bath Temperature	260 °C Max		
Dippng Time	5 Second Max		
Dipping Position	No lower than 3mm from the base of the epoxy		

Hand Soldering					
	3mm Series	Others			
Temperature Soldering Time Position	300 °C Max 3 Second Max No closer than 3mm from the base of the epoxy	350 °C Max 3 Second Max No closer than 3mm from the base of the epoxy			

- * Do not apply any stress to the lead. Particularly when heated.
- * The LED must not be repositioned after soldering.
- * After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- * Direct soldering onto a PC board should be avoided. Mechanical stress to the resin may be caused by the PC board warping or from the clinching and cutting of the leadframes. When it is absolutely necessary, the LEDs may be mounted in this fashion, but, the user will assume responsibility for any problems. Direct soldering should only be done after testing has confirmed that no damage, such as wire bond failure or resin deterioration, will occur. LEDs should not be soldered directly to double sided PC boards because the heat will deteriorate the epoxy resin.
- * When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
- * Cut the LED leadframes at room temperature. Cutting the leadframes at high temperature may cause LED failure.

