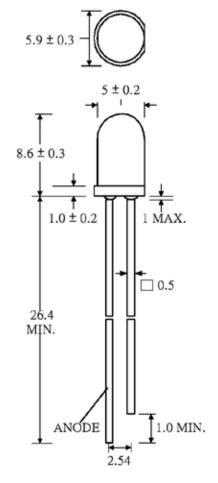


SPECIFICATIONS CL50G2C


OUTLINES DIMENSIONS

DESCRIPTION

- Super bright LED Lamp
- Round type
- T1-3/4 (5mm) diameter
- Lens color: Water clear
- With flange
- Solder leads without stand-off

- Emitted color: Super Green
- High luminous intensity
- Technology: AlGaInP
- Dominant wavelength $\lambda_D = 570$ nm
- Viewing angle: 30°

Notes:

- 1. All Dimensions are in millimeters (inches).
- 2. Tolerance is \pm 0.25mm (0.01") unless otherwise noted.
- 3. Specifications are subject to change without notice.

Part Number	Chip Material	Color of Emission	Lens Type	Viewing Angle
CL50G2C	InGaAlP	Green	Water Clear	30°

ABSOLUTE MAXIMUM RATINGS

(TA=25°C)

Parameter	Symbol	Max Rating	Unit	
Power Dissipation	Pb	78	mW	
Pulse Current Forward Current	lFP	100	mA	
Continuous Forward Current	lF	30	mA	
Reverse Voltage	VR	5.0	V	
Operating Temperature Range	Topr	-40~+85	°C	
Storage Temperature Range	Тѕтс	-40~+100	°C	

IFP = Pulse Width ≤ 10 ms, Duty Ratio ≤1/10. Soldering Condition: 260 °C/ 5sec

OPTICAL-ELECTRICAL CHARACTERISTICS

(TA=25°C)

Doromotor	Symbol	Test Condition	Value			Linit
Parameter			Min	Тур	Max	Unit
Luminous Intensity	lv	I _F = 20mA	450	650	-	mcd
Forward Voltage	VF	I _F = 20mA	1	2.1	2.6	V
Reverse Leakage Current	lR	V _R = 5V	1	-	10	μΑ
Viewing Angle	201/2	I⊧ = 20mA	1	30	-	deg
Peak Wavelength	λР	I⊧ = 20mA	-	574	-	nm
Dominant Wavelength	λD	I⊧ = 20mA	-	570	-	nm

^{*}Tolerance of viewing angle: -10 / +5 deg.

BIN CODES

LUMINOUS INTENSITY RANK LIMITS ($I_F = 20 \text{mA}$)

Unit: mcd

Code	Min	Max
24	380	490
25	490	640
26	640	830
27	830	1080

DOMINANT WAVELENGTH RANK LIMITS ($I_F = 20$ mA)

Unit: nm

Code	Min	Max
YG4	567	569
YG5	569	571
YG6	571	573
YG7	573	575
YG8	575	577

FORWARD VOLTAGE RANK LIMITS ($I_F = 20 \text{mA}$)

Unit: V

Code	Min	Max
В	1.6	1.8
С	1.8	2.0
D	2.0	2.2
E	2.2	2.4
F	2.4	2.6

OPTICAL CHARACTERISTIC CURVES

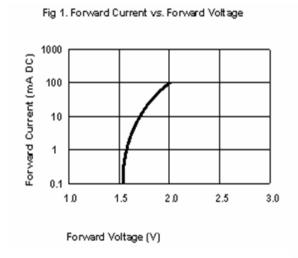


Fig 3. Forward Voltage vs. Temperature

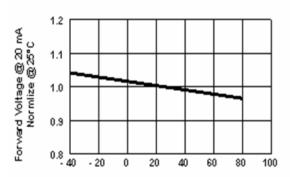
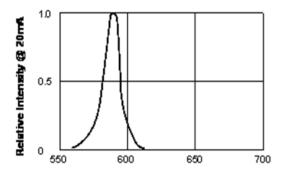



Fig 5. Relative Intensity Vs. Wavelength

Wavelength (nm)

Forward Current(mA)

Fig 4. Relative Intensity vs.Temperature

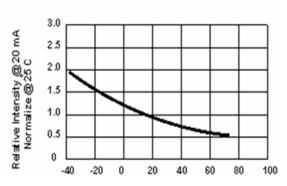
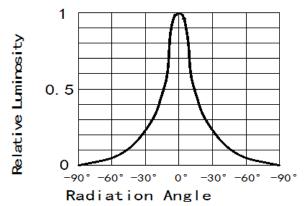



Fig 6. Relative Luminous Intensity vs. Radiation Angle

RoHS Compliant

SOLDERING CONDITIONS – LAMP TYPE LED

- * Solder the LED no closer than 3mm from the base of the epoxy bulb. Soldering beyond the base of the tie bar is recommended.
- * Recommended soldering conditions

Dip Soldering			
Pre-Heat	100 °C Max		
Pre-Heat Time 60 Second Max			
Solder Bath Temperature	260 °C Max		
Dippng Time 5 Second Max			
Dipping Position No lower than 3mm from the base of the epo			

Hand Soldering			
Temperature Soldering Time Position	3mm Series	Others	
	300 °C Max	350 °C Max	
	3 Second Max	3 Second Max	
	No closer than 3mm from the	No closer than 3mm from the	
	base of the epoxy	base of the epoxy	

- * Do not apply any stress to the lead. Particularly when heated.
- * The LED must not be repositioned after soldering.
- * After soldering the LEDs, the epoxy bulb should be protected from mechanical shock or vibration until the LEDs return to room temperature.
- * Direct soldering onto a PC board should be avoided. Mechanical stress to the resin may be caused by the PC board warping or from the clinching and cutting of the leadframes. When it is absolutely necessary, the LEDs may be mounted in this fashion, but, the user will assume responsibility for any problems. Direct soldering should only be done after testing has confirmed that no damage, such as wire bond failure or resin deterioration, will occur. LEDs should not be soldered directly to double sided PC boards because the heat will deteriorate the epoxy resin.
- * When it is necessary to clamp the LEDs to prevent soldering failure, it is important to minimize the mechanical stress on the LEDs.
- * Cut the LED leadframes at room temperature. Cutting the leadframes at high temperature may cause LED failure.

